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Abstract: In this paper, our central notions of analysis are convexity and betweenness. These concepts are given from the viewpoint
of conceptual spaces and are specified in relation to the coordinates of a polar system. We introduce and study a problem that seeks to
optimize a polar convex objective subject to polar convex constraints, which we refer to as the polar convex programming problem. We
utilize a geometric methodology to solve the two-dimensional version of this optimization problem. Our interpretation of the approach
is inspired by the classical graphical method for linear optimization problems. To the best of our knowledge, this family of optimization
problems has not yet been addressed or even raised by researchers.
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1 Introduction

Operations research is a significant area of applied
mathematics with a wide range of applications in
business, government, engineering, and agriculture that
consistently employs quantitative statistics and algorithms
to carry out decision-making processes. It frequently
involves the analysis of intricate real-world systems with
the goal of improving (or optimizing) their performance.
Given the limited resources available, operations research
permits analysis of decision-making to identify ways to
maximize or minimize them. The advantages of both the
existing and future uses are anticipated to expand as
society’s citizens become more aware of the resource
constraints they face and place a higher value on
long-term planning and productivity gains. From
everyday commercial businesses to significant choices of
any kind, from engineering creation to industrial
production, and from picking a career path to organizing
our vacations, optimization is present everywhere. There
are always some things (objectives) we are attempting to
optimize in all of these activities. These objectives may
include gain, cost, achievement, quality, benefit,
fulfillment, and others. As a result, studies on

optimization have both scientific and practical
applications, and the methodology will therefore find
usage in a wide range of fields.

The main component of optimization (or
mathematical programming) is the formal approach to
solving optimization problems. Because real-world
modelers and planners tend to be pessimists, it frequently
appears that real-world problems are best expressed as
minimizations; however, whenever talking mathematics,
maximizing problems are typically more pleasant to
perform with. From the perspective of the designers
(maximize benefit or minimize cost) and the analysts
(maximize f or minimize − f ), switching from one to the
other is, of course, straightforward.

Among all optimization applications, linear
programming [1–5] is a potent mathematical modeling
tool that is frequently utilized in the oil industry,
engineering design, business planning, etc. It is important
to note that the term “programming” refers to planning
and is unrelated to computer programming. In a broad
sense, programming can be thought of as a mechanism to
decide how to allocate a finite number of resources in an
effort to expressibly maximize or minimize a given
amount. According to Moya Navarro [6], George B.
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Dantzig and another team of affiliated academics agreed
with the behest of the United States government’s military
authorities in 1947 and started out to research how to use
mathematics and statistics to solve planning and
progression problems for purely military intentions.
Dantzig and his fellow workers first brought out the
fundamental mathematical framework of the linear
programming problem in the same year.

Finding the optimal solution to a linear goal
(objective) function within linear constraints is the
fundamental concept of linear programming. The variety
of problems that can be handled using linear
programming techniques is amazing. For instance, linear
optimization has been employed to solve optimization
problems with notable success in fields like management,
agriculture, nutrition, planning, energy, economics,
business administration, contract bidding, transportation,
health care, facility location, and many others. The list is
essentially infinite. Convex optimization is one of the
main classes of mathematical optimization problems that
comprises, but is not limited to, linear programming
problems, convex quadratic programming problems
(see [7] for example), and semidefinite programming
problems (see [8] for example).

We concentrate in this work on the idea of convexity,
which is a crucial notion in Gärdenfors’ [9, 10] semantic
theory: The principle that conceptions might be described
as convex areas of some kind of conceptual space. The
theory of conceptual space is being introduced for a wider
range of reasons, including to provide a replacement for
language depictions of knowledge. The conceptual spaces
theory [9, 11–13] is a strategy for illustrating and
describing information and is therefore not fundamentally
empirical. In a conceptual space, regions represent
concepts, and points represent objects. Gärdenfors [12]
believed that by expressing and defining information in
terms of conceptual spaces, their projectible features
could be easily established. Thus, some of the more
common induction problems are eschewed, and, in such a
manner, better bases are provided for inductive inferences
to be drawn through artificial means. He developed the
theory of conceptual spaces as a specific structure for
conceptually illustrating information, and he considered
that the idea of conceptual space can be comprehended as
an improvement over the “quality spaces” in Quine [14],
the “attribute spaces” in Carnap [15], and the “logical
spaces” in Stalnaker [16]. A conceptual space is built on
geometrical forms based on a number of quality
dimensions. A conceptual space may be expressed as a
group of one or more domains. The fact that not all
domains in conceptual spaces are presumed to be metric
must be highlighted. In some cases, a domain consists
only of a graph or an ordering with no defined distance.
There is no unified scale to describe distances across the
whole space; thus, the domains may be
“incommensurable”.

This paper’s primary contribution is a new paradigm
for optimization problems. The name that is attributed to

it is the polar convex programming (PCP for short)
problem. We propose an approach to its resolution. The
focus is particularly on polarizing the graphical method
from its classical applications. We present graphs at the
level of polar coordinates, not Euclidean coordinates. In
principle, the concept of polar betweenness (with respect
to an origo) is all that is required in our study, so that the
concept of a polar convex (or polarly convex) set will be
defined and determined using it without the need for the
metric produced by the polar coordinate system.

The present paper is organized as follows. A
comprehensive exposition of all the needed facts on
conceptual spaces is provided in Section 2, where we also
talk about the notions of betweenness and convexity from
the perspective of conceptual space, using both Cartesian
and polar coordinates, which are important in our
analysis. Section 3 starts with a concise discussion of
linear and convex programming and moves on to their
graphical method of resolution. Along the way, historical
research and previous works about the topics are also
taken into account. Section 4 consists of a polar convex
optimization model, a complete description of the
proposed method associated with the polar convex
programming problem, and some examples for
illustration. Finally, the conclusion part is covered in
Section 5.

2 Conceptual spaces and polar convexity

As was previously indicated, in this section, we discuss
convexity from the perspective of conceptual space, using
both Cartesian and polar coordinates.

The set K ⊂ Rn is allegedly convex if
αx+(1−α)y ∈ K whenever x,y ∈ K, and α ∈]0,1[ (or
equivalently, α ∈ [0,1]). In geometrical terms, this
signifies that the line segment between x and y is
completely contained in K once both of its endpoints, x
and y, are there.

The notion of “conceptual spaces” was created as a
specific frame for describing knowledge at the conceptual
level. Conceptual space is a high-level collection of
concepts and relations, used for organizing and
comparing sensory, memory, or imaginative experiences.
We also have the following definition [17].
Definition 2.1. Quality dimensions are generalized
distinctions which determine the kinds of domains
concepts belong to, such as temperature, weight, height,
width and depth.

Pitch, color, time, mass, and the three standard spatial
dimensions of ordinary space (length, height, and width)
are other examples of such quality dimensions. Each
quality dimension is equipped with a specific metrical or
topological structure. For instance, the conceptual space
of Newtonian particle mechanics is, of course, based on
dimensions of scientific quality rather than psychological
quality. Among this theory’s quality dimensions are time
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(similar to the line of real numbers), weight (the positive
real numbers), ordinary space (3-D Euclidean), force
(3-D Euclidean vector space), and mass (isomorphic to
the non-negative real numbers). A particle is fully
characterized in terms of Newtonian mechanics once
values have been assigned to each of these dimensions.
The aim is to give a realistic picture.

According to what we know, Gärdenfors [13] is the
one who evolved the theory of conceptual space. The
following is the conceptual space definition in
Gärdenfors’ vocabulary.
Definition 2.2. A conceptual space, which is a cognitive
entity, consists of a number of quality dimensions. This
concept is an idealized (theoretical) notion that, as a first
approximation, can be thought of as the aspects or qualities
of the external world that we can perceive or think about.

Any theory of representation must address the key
issue of how notions ought to be modeled. Here, the
major objective is to illustrate the benefits of using the
conceptual level and employing conceptual spaces as a
frame for the description of different situations under
various circumstances. According to the conceptual
approach [18], anyone can choose their own space and, in
doing so, enable their favored characteristics to naturally
manifest themselves there. Gärdenfors referred to his
information representation method as the “conceptual
form” because he thought that it best captured the key
elements of concept generation. Dimensions are the
fundamental structural elements of representations in
conceptual space. Humans and animals can describe the
qualities of objects, such as when organizing an activity,
without assuming that these characteristics are expressed
through an internal language or another symbolic system.
In comparison to what can be realized on the symbolic
level, conceptual spaces may offer a better technique for
illustrating notion formation in particular and learning in
general. It is considerably simpler to comprehend the
workings of inductive conclusions when qualities are
represented in terms of conceptual spaces. The conceptual
level is appropriate for one important task assumed by
symbolic representations: Providing symbolic meanings.

Another crucial aspect of representations in conceptual
spaces is the need to categorize information into domains.
Only a few quick observations are offered here regarding
representation at the conceptual level. We now present the
following observations in Remark 2.1 (see [9]):
Remark 2.1.

(i) The primary application of the theory of conceptual
spaces is to function as a framework for
representations. When the framework is
complemented with assumptions concerning the
geometrical structure of particular domains and how
they are connected, one arrives at empirically testable
theories.

(ii) In a conceptual space that is used as a framework
for a scientific theory or for construction of an
artificial cognitive system, the geometrical or

topological structures of the dimensions are chosen
by the scientist proposing the theory or the
constructor building the system. The structures of the
dimensions are tightly connected to the measurement
methods employed to determine the values on the
dimensions in experimental situations. Thus, the
choice of dimensions in a given constructive situation
will partly depend on what sensors are assumed to be
used and their function.

We are so impacted by the Euclidean geometry and
the Cartesian coordinate systems due to their ease of
handling that we ignore that there are other ways of
describing spaces. Normally, space is illustrated using the
Cartesian coordinates x,y, and z, which represent width,
depth, and height, respectively, and distances are
measured utilizing a Euclidean metric. Nevertheless,
polar coordinates are used to represent points in space by
angles and distance, offering another way to depict space
that may be cognitively more realistic. In the present
section, we will discuss the concept of convexity from the
perspective of the conceptual space, employing the
Cartesian coordinates as well as the polar coordinates.

Conceptual space theory has been applied in a variety
of contexts. Among these contexts, it has been utilized to
define what constitutes a natural property. A natural
property [12] is a convex region in some domain. A
three-dimensional Cartesian space with the coordinates
x,y, and z gives a formal definition for the idea of
betweenness [19] as follows:

Definition 2.3. A point b = (xb,yb,zb) lies between a point
a = (xa,ya,za) and a point c = (xc,yc,zc) if there is some
k ∈]0,1[ such that xb = kxa+(1−k)xc, yb = kya+(1−k)yc
and zb = kza +(1− k)zc.

With the help of the concept of “between”, convexity
in the conceptual space S is described in Definition 2.4
(see [9]).

Definition 2.4. A subset C of a conceptual space S is said
to be convex if, for all points x and y in C, all points
between x and y are also in C.

Cognitive experts believe that a polar rather than a
Cartesian representation of space is more natural and has
an accompanying visual interpretation as well. We are
talking about this style now in order to provide a more
simplistic and comprehensible approach to the graphical
method subsequently. Although Definition 2.4 portrays
convexity as a simple concept, Zwarts and
Gärdenfors [19] reckoned that convexity is related to how
spatial positions are illustrated with regard to a specific
origo. They demonstrated that a specific version of
convexity holds quite consistently when using polar
coordinates in the domain of prepositions. Consider the
three-dimensional space S established in polar
coordinates, or more specifically, spherical coordinates,
as seen in Figure 1.
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Fig. 1: Polar coordinates representation of the point p =
(r,θ ,φ)

The space is thought to have an origo point o. A triple
(r,θ ,φ) is utilized to represent a point p, where:

– The radius r is a non-negative real number indicating
the distance between p and the origo.

– The azimuth angle θ is the angle between p and the
x-axis, such that 0◦ ≤ θ < 360◦.

– The polar angle φ is the angle (with 0◦ ≤ φ ≤ 180◦)
between p and the positive z-axis (the zenith).

The angle θ is supposed to be moving
counterclockwise when viewed from the positive side of
the z-axis (from ‘above’), in such a manner that the
positive y-axis matches to θ = 270◦ and the negative
y-axis matches to θ = 90◦. As is customary when
utilizing polar coordinates, the zenith (up) and azimuth
(north) serve as the fixed reference directions and are
therefore two absolute settings of reference that are
already incorporated into the polar coordinates.

The line segment extending rightward from the center
point is called the polar axis. In terms of Cartesian
coordinates, this would be known as the x-axis. The
center point is referred to as the pole and correlates to a
radius of r = 0. In the following definition, we present the
polar equation of the curve.

Definition 2.5. The equation g(θ) = r, which represents
the dependence of the length of the radius r on the angle
θ , describes a curve in the plane and is called the polar
equation of the curve.

Another idea of betweenness and, thus, another
concept of convexity, can be identified utilizing polar
coordinates. To move forward in our discussion of polar
convexity, we must first review the concept of polar
betweenness (p-betweenness). We have already given a
concise description of the Cartesian conception of
“betweenness”. Consider the following definition of polar
betweenness [10], which is distinct from the one
produced by the standard Euclidean metric, assuming that
we are presented with a valid representation of polar
coordinates as defined above.

Definition 2.6. A point b= (rb,θb,φb) lies between a point
a = (ra,θa,φa) and a point c = (rc,θc,φc) if there is some
k ∈]0,1[ such that

– rb = kra +(1− k)rc,
– θb = kθa +(1− k)θc iff |θa − θc| ≤ 180◦, and θb =

kθa +(1− k)(θc −360◦) iff |θa −θc|> 180◦,
– φb = kφa +(1− k)φc.

Although the azimuth angle can be more than 180
degrees, betweenness is determined in relation to the
smallest angle. Because “p-betweenness” can only be
specified to determine the shortest distance along the
θ -dimension, the θb requirement is divided into two
situations. Figure 2 illustrates that the magenta point,
(1.5,π/4), is polar between (1.5,π/2) and (1.5,0) along
a circle, which are the yellow and cyan points,
respectively. Figure 3 shows that the magenta point,
(1,π), is polar between (2,π) and (0.5,π) along a radial
line, which are the yellow and cyan points, respectively.
Figure 4 shows that the magenta point, (1.5,π), is polar
between (2,10π/9) and (0.5,7π/9) along a curve, which
are the yellow and cyan points, respectively.

Regarding the usual Euclidean metric, the polar
coordinates add a different metric to the space. Therefore,
if observed with Euclidean glasses, the lines produced by
this polar betweenness relation will be curving. We make
the following observation:
Remark 2.2. In the two-dimensional state, if the
difference between a and b occurs only on the angle, then
the points p-between them are located on a circle, as
illustrated in Figure 2, where a and b are the marked
points (yellow and cyan, respectively). If the only
difference between a and b is their radius, the points
p-between them form a radial line, as shown in Figure 3.
When the radius and angle are different, then the
p-between points define a curve as presented in Figure
4. Two points on opposing sides of the origo are
connected by a curve around it.

Let us now examine three points that do not satisfy
the property of polar betweenness. Consider Figure 5, in
which three coordinate points appear within its axes. We
want to prove that the magenta point, (6,π), is not polar
between (9,3π/4) and (12,5π/4), which are the yellow
and cyan points, respectively. We check to see if the
magenta point is polar between the other two, using the
defined formulas in Definition 2.6. First, we examine
whether the radius equation holds true. By replacing the
values of ra = 9,rb = 6, and rc = 12 in the equation
rb = kra + (1 − k)rc, we get k = 2. Therefore, the
definition of polar betweenness does not hold for the
radius equation because k exceeds the range of its
possible values. Hence, it is unnecessary to attempt to
show the angular equation since it already fails for the
radius. We can thus conclude that the magenta point is not
polar between the yellow and cyan points in this example.
Figure 5 illustrates that the magenta point, (6,π), is
non-polar between (9,3π/4) and (12,5π/4), which are
the yellow and cyan points, respectively.
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along a radial line
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along a curve
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Fig. 5: Non-polar
betweenness points

Consider an area R in S, which is defined as a
collection of points, each of which is represented as a
polar coordinates associated with a single origo o. After
that, let us take a quick look at the concept of polar
convexity. With the notion now invoked in Definition 2.6,
we can define the property of p-convexity. We have the
following formal definition [10].
Definition 2.7. A region R in S is defined to be polarly
convex if and only if for all points a and b in R, any point
c that is polarly between a and b is also in R.

Fig. 6: A polar convex disk (left) versus a non-polar convex
disk (right)

It is worthwhile noting that the convex regions formed
by the Euclidean metric and those specified by the polar
betweenness relation will not be the same. One idea to
specify regarding Definition 2.7 is that when the Cartesian
coordinate system is multiplied, translated, or rotated,
Euclidean convexity is maintained. Polar convexity, on
the other hand, only preserves convexity when multiplied
(which changes the values of the r-axis) and rotated (the
value of φ - and/ or θ -axes are shifting). If there is a
translation, that is, if the origo is shifted, convexity could
be lost. This highlights how crucial the origo is to polar
coordinate systems. It should be emphasized that the
whole space is the only polar convex set that permits both
unrestrained rotation and unrestrained multiplication. The
left side of Figure 6 illustrates an example of a polarly
convex region, whereas the right side provides an
illustration of a form that is not polarly convex.

Note that we can also talk about the polar convexity
characteristic of the intersection between regions. If two
regions are both polar convex and centered around the
same origo, then their intersection is polar convex as well.
A sphere is said to be p-convex only when the origin of its
polar coordinates and its center coincide. The same
applies to a sphere’s interior, exterior, and the region
between two spheres with the same origo but different
radii. A number of other important three-dimensional
regions are polar convex. The following remark [19] does
not illustrate an exhaustive list of such regions but simply
represents a small sample of eligible areas.
Remark 2.3. A full line or full plane is p-convex if it
contains the origo. A half-line or line segment is p-convex
if it is on the same line as the origo. A half-space or
half-plane is p-convex if the origo is a point on the
bounding plane or line. An infinite cone is p-convex with
respect to its apex.

Conversely, there are specific regions for which polar
convexity does not hold, despite the fact that they could
be convex in terms of Cartesian coordinates. Some
examples of figures that do not fall under the realm of
polar convexity are triangles, rectangles, squares,
cylinders, and cubes. An instance of a shape that is
neither convex in the polar nor Cartesian sense is the
double cone, as shown in [19]. We close this section with
these definitions.

A curve in polar coordinates (or a polar curve)
g = g(r,θ) is called polar convex if it encloses a polar
convex region. For example, the circle centered at the
origo, g(r,θ) = r, is a polar convex curve because it
encloses a disk centered at the origo, which is a polar
convex set.

3 The graphical method for linear and
convex optimization

Before looking at the application of the graphical method
for polar convex optimization problems, we first review it
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for linear and convex optimization problems. The present
section is devoted to a quick reminder of linear (and more
generally convex) optimization problems and their
methods of resolution, especially the classical graphical
method, which is illustrated with two examples to
facilitate the understanding of certain passages in the next
section.

Linear optimization refers to the method of extracting
the best outcomes from linear relationships. Problems are
described in mathematical terms using optimization
models. A linear (respectively, convex) optimization
model consists of the problem of optimizing a linear
(respectively, convex) function over linear-set
(respectively, convex-set) constraints. Particularly, in
linear programming problems, an optimized outcome is a
maximization or minimization of the given linear
representation of decision variables. This representation is
known as the objective function. This function possesses
certain limitations that inhibit its ability to reach values
above or below specified thresholds. This event is also
referred to as the constraint set.

It is known that linear and convex optimization
problems have a pretty full theory, appears in a wide
range of applications, and may be resolved numerically
very efficiently. There are numerous methods to solve
problems in linear programming. For problems with two
variables, the geometric technique can be employed. In
principle, the graphical approach can be used in the
situation of three variables. This approach has the
drawback of only solving a few specific circumstances
rather than solving the entire problems of linear
programming. Hundreds or thousands of decisional
variables are present in many real-world problems,
making them too complicated for the graphic approach to
handle. Consequently, a formal strategy is required. The
simplex method, developed by Danzing in 1947, was the
first general approach to solving linear programming. At
the boundaries of the feasible set, both graphical and
simplex approaches look for maximum or minimum goal
functions.

Despite the fact that practice has demonstrated that
the simplex method is quite successful, in 1972, Klee and
Minty [20] showed that it was not polynomial (at least
with the pivot rule that is most frequently utilized,
Dantzig [21]). More precisely, the unfavorable aspect of
the simplex method is that, in the worst-case scenario, the
total number of steps and the overall time needed to get a
solution increase exponentially with the number of
variables. As a result, it is claimed that the simplex
approach has exponential complexity. In order to solve
linear programs with polynomial complexity (that is, to
find a solution in a period of time constrained by a
polynomial in the number of variables), this sparked
interest in creating algorithms. Khachian [22] proposed
the first polynomial algorithm for resolving a linear
optimization problem in 1979. But his method generated
more theoretical interests than practical ones. The need to
find a practical application method with polynomial

complexity led Karmarkar [23] to propose a new method
for linear optimization with a polynomial time in 1984.
The approach looks to be more efficient than the simplex
method at solving various challenging real-world
planning, scheduling, and routing problems. Interior point
techniques [7, 8, 24–30] are now one of the most
commonly adopted for resolving linear and convex
programming problems. In spite of the discovery of
polynomial algorithms, the simplex method is still in use
for linear programming and has undergone various
modifications.

We now explain the graphical method for linear
optimization. The geometric point of view bases its
analysis depending on the geometry of the feasible area
and makes use of concepts like convexity. It is less reliant
on how the limitations are written specifically. Employing
geometry makes many of the notions in linear
optimization simple to grasp since they can be explained
in relation to basic ideas like moving along an edge of the
feasible area (especially in two-dimensional situations
where a graph of the feasible region is possible). The
graphical approach to tackling problems involving linear
programming is briefly described below, using an
example. We illustrate a maximization problem involving
two inequality constraints. All values are restricted to
being non-negative. Since there are only two variables,
we can solve the following problem graphically.

max z = 2x1 +3x2
s.t. 3x1 +2x2 ≤ 42,

5x1 +8x2 ≤ 120,
x1,x2 ≥ 0.

(1)

Let us examine Problem (1). After determining the two
valid sides corresponding to the constraints, the feasible
region can be drawn and is shown in Figure 7. The
directions of the improvement lines are displayed in
Figure 8. The optimal solution is at (48/7,75/7), which
is the bolded point in Figure 9. To determine the
maximum value for the objective function, we input
x1 = 48/7 and x2 = 75/7 into z = 2x1 + 3x2. As a result,
the maximum value of z, given the two constraint
inequalities, is 321/7.

−5 5 10 15 20 25

10

20

x1

x2

Fig. 7: The feasible region
for Problem (1)

−5 5 10 15 20 25

10

20

x1

x2

Fig. 8: The direction of
improvement for Problem
(1)
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Fig. 9: The optimal solution for Problem (1)

The graphical method is not limited to solving only
linear optimization problems; it is more general than that,
as it is adopted to solve various types of optimization
problems involving two or three variables. We started
with the linear problem due to its ease on one hand and its
importance on the other hand. Now we consider the
following convex programming problem and solve it
graphically.

max z = x1 + x2
2

s.t. x2
1 + x2

2 ≤ 3,
x1 ≤ 2,

x2 ≥
√

5.

(2)

Figure 10 illustrates the feasible region of Problem
(2), while Figure 11 represents the corresponding
direction of improvement. The optimal solution is at the
point (0.5,

√
8.75), as shown in Figure 12, and the

optimal value is 9.25.

Fig. 10: The feasible
region for Problem (2)

Fig. 11: The direction of
improvement for Problem
(2)

Fig. 12: The optimal solution for Problem (2)

4 Polar convex optimization and the
graphical method

It is time now to move into our key theme. In this section,
the formulation of the PCP problem is given, and the
proposed graphical method is illustrated using an
algorithm and some examples.

The objective in a PCP problem is polarly convex
curve and the feasible domain is determined by polarly
convex regions. So, a PCP problem in any given situation
aims to optimize the polarly convex objective under a set
of polarly convex constraints. The following formal
definition is what we have.

Let g(r,θ) be a polar convex curve. A polar convex
optimization model is one that optimizes the objective
g(r,θ) that meets a finite set of polar convex constraints.
Each of the polar constraints has one of the form
hi(r,θ) = 0 for i ∈ E , or hi(r,θ) ≥ 0 for i ∈ I , where
hi, i ∈ E ∪I are polar convex regions. Here, E and I are
two finite sets of indices. So, a general formulation for the
PCP problems is

minr,θ g(r,θ)
s.t. hi(r,θ) = 0; i ∈ E ,

hi(r,θ)≥ 0; i ∈ I .
(3)

Problem (3) is the general form of PCP problems.
In Section 3, we introduced the basic context of linear

optimization, especially the graphical method of its
resolution, in order to make our research on PCP that will
be discussed in this part easier and clearer. In this section,
we lay out the initial approach to the PCP problem. We
suggest a technique for graphically visualizing and
analyzing p-convex problems.

The graphical method for resolving the polar convex
optimization problem involves determining the minimum
or maximum point(s) of the intersection on a graph in a
polar coordinate system between the objective and the
feasible area. The method is formulated compoundly
using the themes of polar convexity and the graphical
method for convex optimization encountered in the
previous section.

Let us first provide a relevant example that helps with
visualization before discussing the optimization method
for p-convex forms. In our illustration, we have both a
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spherical stone and a circular pool of water. We merely
need to be able to throw this stone into the water with
accuracy; the dimensions of the stone need not be
revealed. Initially, the stone is hurled into the exact center
of the pool. It pushes the water aside for a short moment
in order for the stone to create for itself a place from
which it can descend to the bottom by the law of earthly
gravity, and the water that propels it aside in turn thrusts
the rest of the water, and this is how the circles are
formed, grow, and expand in every direction (see Figure
13). Since the pool is circular and the stone is spherical,
these ripples will reach the outer bounds at precisely the
same time throughout the circumference. When the
circles expand, their resistance gradually weakens and
decreases until they end and disappear completely, at
which point the water returns to a state of stillness until
another stone is thrown into it. However, let us now repeat
the throwing process with the same parameters observed,
except for the landing spot of the stone. This time, the
stone splashes down in the first quadrant of the pool.
While the ripple process occurs in the same fashion as
before, the outermost ripples will reach the bounds in the
first quadrant before they reach those of the other
quadrants. This is due to the changed “origin” point of the
stone and will be essential to the method of polar convex
programming.

Fig. 13: Water circles (this picture is taken from
https://webarchive.gemini.edu)

Now that the example has been given, we can
consider the idea of optimization that was previously
stated. As before, this requires an objective polar convex
curve along with a set of polar convex constraints that the
maximization or minimization is subjected to undergo. In
this section, we will deal with polar convex regions.
Instead of using the Cartesian coordinate plane, we will
employ the polar coordinate plane to describe and solve
the polar convex optimization problems. We will see that

utilizing a graphical approach makes it simple to solve
PCP problems in two-dimensional polar coordinates.
Because of the difficulty in visually representing or
depicting polar convex problems, we limit ourselves to
solving them in two dimensions using the graphical
approach rather than dealing with spherical coordinates.

Algorithm 1 is stated to find the maximum or minimum
value of polar convex optimization problems graphically.

Algorithm 1: The graphical method algorithm
for PCP.
1 begin
2 Given: Mathematical model (P) with polar

coordinates (r,θ);
3 Output: Optimal solution point (ropt ,θopt)

and optimal value gopt .
4 Test: Is the problem (P) a polar convex

program? if the problem (P) is PCP, then
5 Procedure:

(i) Graph the area that complies with all the
requirements (constraints).

– Consider inequalities as equalities, and then
create a graph for each of the equalities.

– Locate the valid side of each requirement.
– Determine and isolate the feasible region.

(ii) Detect the direction of improvement by placing
two polar convex curve objectives in the graph.

(iii) Find the coordinates of the optimal solution
(optimum point) (ropt ,θopt).

(iv) Evaluate the polar convex objective curve at the
acquired point (ropt ,θopt) to obtain the desired
optimal value gopt .

6 else
7 Select an appropriate method for solving

(P).
8 end if
9 end

To help illustrate the optimization technique involving
polar convex regions, let us look at the following
examples to see how the graphical method for the PCP
works. The first example that we discuss possesses a
systematic approach to finding a solution that stems from
the process methodology above.

Example 4.1. We consider an example involving a figure
called the two-dimensional concentric circles. Concentric
circles are polar convex, according to Definition 2.7, which
makes them a useful case study for our method. Here, we
examine an example that incorporates concentric circles, a
full line, a half-space, and a circle polar convex objective
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curve.
max g = r2

s.t. r ≤ 3,
r ≥ 3/2,
sinθ = 0,
cosθ ≤ 0,
0 ≤ θ ≤ 2π.

(4)

Now, to solve Problem (4) graphically, we need to
implement the steps described in Algorithm 1 as follows:

(i) Graph the area that complies with all the constraints
in a polar coordinate plane:

– Graph constraint equations: To plot the
constraints given by inequalities, we first assume
that each inequality is in fact an equation. As
shown in Figure 14, the brown circle represents
r = 3, and the black circle describes r = 3/2,
while the orange and magenta lines illustrate
cosθ = 0 and sinθ = 0, respectively.

– Determine the valid side of each constraint:
Using Figure 14, we can determine which side of
the brown circle we are seeking for the given
inequality. Note that the first constraint is satisfied
for (1,π/4), so we are looking at the side that
includes this point. We apply the same process for
the three other constraints. We can directly
observe that the first two constraints form
concentric circles of radius 3 and 3/2,
respectively. Figure 15 depicts the valid sides of
constraints.

– Isolate and identify the feasible region: The next
step is completed by identifying the area of the
graph that is feasible. The intersection of all valid
sides is reduced to the line segment that is
provided in yellow in Figure 16. It should be
noted that the line segment formed by the
intersection of the four polar convex regions
centered on the same origo is also a polar convex
line segment.

(ii) Determine the direction of improvement: Now that
we have found the feasible area, we are interested in
finding ropt and θopt in this region that maximizes the
value of the objective g = r2. We strategize by
making the polar convex goal equal to some arbitrary
number; this arbitrary number is 1, for example, and
the next step is to sketch this equation. Now that the
objective has been drawn in Figure 17, we must
repeat this step, but this time we will set the objective
to a different value. Defining the new number
depends on the objective direction, and by direction
we mean whether we are focusing on a maximization
or minimization objective. Because we are looking at
a maximization problem, the second value that we
select for g should be greater than 1. Our choice for
the second value in this example is 4. We must now
draw the equation g = 4 as well. Figure 17 shows the
direction of improvement.

(iii) Find the maximum point: As shown in Figure 18,
(ropt ,θopt) is the last point that the objective, g, hits
as it moves into the feasible region toward its
improvement. As a result, the combination of ropt and
θopt that maximizes g is (ropt ,θopt) = (3,π). So,
there is a unique optimal solution to this problem.

(iv) Find the maximum value: We need to calculate the
value of g for the optimal solution. We obtain the
value of gopt by substituting ropt and θopt in
g = r2. The ultimate goal for Problem (4) is to find
the maximum value of g within the three listed
constraint inequalities and the constraint equality,
which equals 9. As a result, gopt = 9.

Fig. 14: The polar
constraint equations in
Example 4 .1

Fig. 15: The valid sides of
constraints in Example 4.1

Fig. 16: The feasible
region for the PCP in
Example 4.1

Fig. 17: The direction of
improvement in Example
4.1
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(ropt ,θopt)

Fig. 18: The optimal solution for the PCP in Example 4.1

The PCP problem could be unbounded, feasible (with
a unique solution or an infinite number of solutions), or
infeasible. These four various kinds are easy to envision
using the graphical method. The following are some
examples.
Example 4.2. Utilize the graphical approach to address the
following PCP problems.

(a) maxg = r
s.t. r ≥ 2,

sinθ ≤ 0,
0 ≤ θ ≤ 2π.

(b) maxg = r2

s.t. r ≤ 3,
sinθ ≥ 0,
cosθ ≤ 0,
0 ≤ θ ≤ 2π.

(c) maxg = r
s.t. r ≥ 3,

r ≤ 2,
0 ≤ θ ≤ 2π.

Solution.

(a) Figure 19 illustrates the given PCP problem
graphically, with the feasible region in the area shaded.
The direction of improvement is described in Figure
20. Note that there is no upper limit on how far the
g-circle can be augmented toward the feasible region.
We can deduce from the graph shown in Figure 21 that
there is no finite optimal value for g. This PCP
problem is therefore unbounded.

(b) Figure 22 depicts the given PCP problem’s graphic
representation and the feasible region (the shaded area),
while Figure 23 describes the direction of improvement.
Keep in mind that the g-circle completely encircles the
arc between (3,π/2) and (3,π). According to the graph
in Figure 24, we find that the maximum value for g is 9,
and that every point on the arc that is outlined in black is
an optimal solution. Thus, there are an infinite number
of optimal solutions to this PCP problem.

(c) Figure 25 displays the graphical representation of the
given PCP problem. Note that there are no points
satisfying the two constraints, i.e., there are no feasible
solutions. As a result, the feasible area is empty, and
the PCP problem is infeasible.

Fig. 19: The feasible
region for the PCP in
Example 4.2 (a)

Fig. 20: The direction of
improvement in Example
4.2 (a)

Fig. 21: The
unboundedness of the
PCP in Example 4.2 (a)

Fig. 22: The feasible
region for the PCP
problem in Example 4.2
(b)

Fig. 23: The direction of
improvement in Example
4.2 (b)

Fig. 24: The optimal
solution for the PCP in
Example 4.2 (b)
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Fig. 25: The infeasibility of the PCP problem in Example
4.2 (c)

Example 4.3. Use the graphical approach to solve the
following PCP problem.

max g = θ

s.t. cosθ + sinθ = 0,
r ≤ 7/2,
cosθ ≤ 0,
sinθ ≥ 0,
0 ≤ θ ≤ 2π.

(5)

Fig. 26: The feasible
region of the PCP problem
in Example 4.3

Fig. 27: The direction of
improvement in Example
4.3

Fig. 28: The optimal solution for the PCP problem in
Example 4.3

Solution. The graphical representation of Problem (5) is
shown in Figure 26; the feasible area is the line segment

in yellow in Figure 26; and Figure 27 presents the
direction of improvement. The feasible line segment is
totally covered by the g-line. The graph in Figure 28
reveals that g has a maximum value of 3π/4 and that
every point on the line segment that is highlighted in
black is an optimal solution.

Minimization problems work in a similar manner as
their maximization counterparts, except for the direction
of the improvement step. Once there, we look for the
direction that improves the least instead of the one that
improves the most. We close this section with the
following example.
Example 4.4. Consider the last example involving the
other type of optimization problem, which is the
minimization one.

min g = r
s.t. tanθ + cotθ = 2,

r ≥ 1,
cosθ ≥ 0,
0 ≤ θ ≤ 2π.

(6)

Fig. 29: The feasible
region for the PCP
problem in Example 4.4

Fig. 30: The direction of
improvement in Example
4.4

Fig. 31: The optimal solution for the PCP problem in
Example 4.4

Solution. The feasible region is given by a half line
pictured in yellow in Figure 29. The best solution will be
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found along the obtained half line. Next, we consider the
direction of improvement. As done in the preceding
examples, we select two arbitrary values for g. Assume
g = 3 and g = 5/2, and this informs us that as g
decreases, the problem moves toward minimization. To
validate this claim, we will now plot two circle objectives.
The two shapes are plotted on the graph shown in Figure
30. The optimal point has been bolded in Figure 31. The
minimum value of g in Problem (6) is 1.

5 Conclusion

Convexity and betweenness served as our primary
analytical concepts in this paper. These notions have been
presented in terms of polar system coordinates and have
been defined from the viewpoint of conceptual spaces. We
have introduced the “polar convex optimization” problem
as a new paradigm of optimization problems. In this class
of problems, we optimize a polar convex objective subject
to polar convex constraints. Our best understanding
indicates that there are no published studies on this
category of optimization problems. We have solved the
two-dimensional version of this problem using a
geometric approach. Our interpretation of the strategy
was motivated by the traditional graphical approach to
linear optimization problems. We commend ourselves and
the interested researchers for looking into solving the
higher-dimensional version of the PCP problem. An open
question in this area of research is whether it is possible
to “polarize the simplex method” for linear programming
in order to be used for PCP. If this is answered
affirmatively, that sounds very interesting and will be a
huge motivator for further studies on this problem.
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